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Nonlinear oscillations of trapped plasmas
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A uniform density ellipsoid is an equilibrium state of a low-energy non-neutral plasma confined in a
harmonic trap. Normal modes of this plasma can be detected; they provide a nondestructive diagnostic tool.
The low-order quadrupole modes are particularly simple. They can be calculated analytically even in a non-
linear regime. In general, nonlinear coupling leads to the complicated stochastic dynamics. In special cases,
regular solutions can be found. It is shown that the behavior of an elongated ellipsoid oriented along the trap
symmetry axis is nearly integrable. The study results in simple analytical expressions for frequencies and
ellipsoid semiaxes.

PACS numbgs): 52.25.Wz, 32.80.Pj, 52.35.Fp

I. INTRODUCTION 1 5 ) S
Uextzzmwo(ax +ay +279),
A non-neutral plasmél] is a collection of charged par-
ticles identical in sign of the charge. It exhibits many of thewhere« is the anisotropy parameter ang is seen to be the
properties of neutral plasma, such as the Langmuir waveequency of axial oscillations of a single particle. The Car-
and the Debye shieldinf2]. On the other hand, there are tesian coordinates,y, andz are taken with respect to labo-
noticeable differences. The non-neutral plasma has excellepitory axes, and measured from the center of the trap.
confinement propertieg3], and can be coolef4] without The two most popular types of traps are the Penning trap
recombining positive and negative particles. [14] and the radio-frequency Paul trfp5]. For the Penning
We study a confined, low-energy, one-species plasm@ap the confining force is electrostatic. The parameter
cloud. This sort of a plasma has a variety of applications—1, and the potential well confines particles in théirec-
including storage of positrori$] and antiproton$6], high-  tion only. The applied magnetic field provides confinement
resolution spectroscopic measurements on [diisand ex-  in a radial direction. For the Paul traB=0. Charged par-
periments on vortex dynamicg8] and Coulomb crystals ticles are confined by an inhomogeneous oscillating electric
[9,10]. The cloud storage time is enough to observe the therfield. For the averaged ponderomotive foraes 5. Hybrid
mal equilibrium state and normal modes of oscillatiphs|. traps with arbitrarya were also studiefl16,17. As a— o,
Being interesting on their own, trapped plasma oscillationghe plasma becomes an infinitely long cylindrical column.
provide a nondestructive diagnostic tool. The detection offhe opposite case is a thin disk as-0.
these modes is used as a probe of plasma properties such as_et us assume that the plasma temperature is low, and the
density and temperatufé2,13. density is sufficiently large so that the Debye length is much
Studying the properties of a non-neutral plasma, one igmaller than the size of the cloud. The plasma therefore has
forced to take into account an external trapping field. Letsharp boundarie§18]. The equilibrium state of a cold
m,v, andq be the particle mass, velocity, and charge, respectrapped non-neutral plasma can be described by a cold-fluid
tively. The external force per particle is theory [19]. The cloud takes the shape of an ellipsoid of
revolution. It is uniformly charged and rotates rigidly about
q thez axis. The theory was verified by the experimght,12,.
F=—=VUeqt CVXB, (1) For very low temperatures, the density is not truly constant
due to correlations in the particle positions. However, as long
R as the interparticle spacing is small compared to the cloud
whereB=Bz is the uniform magnetic field, and.,; is the  dimensions and is small compared to the wavelength of the
potential of the trapping force. The potential is quadratic,plasma modes, the cloud can be treated as a constant-density
assuming that the plasma size is smaller than the distance pasma.
the trap electrodes. If this is the case, the potential is The theory can be understood by referring to the known
results on the elliptical equilibrium of the rotating massive
1 fluid [20]. The analogy is clear. Both systems have the in-
Uext=§mwguijxixj , (2)  verse square law of the interparticle force. The Coriolis force
(in the rotating frame of referengacts like an external mag-
netic field. In addition, the potential of a centrifugal force is
where wq is some constant related to the trapping force in-quadratic, as is the potential of the external trapping force. It
tensity, and the dimensionless tengébdepends on trap ge- can be shown that elliptical equilibrium is also possible in a
ometry. The summation is ovérj=1,2, and 3. In the case quadrupole trap.
of cylindrically symmetric electrodes, the potential energy Let 8 denote the ratio of the axial length to the diameter
per particle is of the plasma. In this paper, we focus on the behavior of a
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prolate spheroid with3>1. Before we proceed, it is appro- asymmetric mode turns out to be separated. What is more,
priate to list the conditions for prolate equilibrium. The as-the solution has a simple exact expression in terms of el-
pect ratiog is related[21] to the plasma frequency, and  ementary functions. We are, therefore, left with a full de-
the trap axial frequencyw,. AssumingB>1, the relation is  scription of the finite amplitude version of asymmetric mode.
Then we turn to coupled radial and axial oscillations. Fortu-

w5 In(2B)—1 nately, radial oscillations of the prolate ellipsoid are at a
T (€©)) much higher frequency than the axial ones. The resonance
“p B does not occur, and the system is nearly integrable. To solve

the equations, we use the method of averaging in its canoni-
| (Hamiltonian form. Finally, we are left with simple ana-
ytical expressions for nonlinear modes and their frequen-
fcies.

Therefore, wy should be small as compared ta,. This
leads to restrictions both on the trap parameters and on t
plasma rotation frequency.

Let w, denote the rigid rotation frequency. In the case o

the Penning trap, the expression foy is [22]
II. BASIC EQUATIONS

2_ _
wp= ~ 20 (wet o), “) In this section we consider the general set of hydrody-

namic equations for plasma motion. In the case of quadru-
pole oscillations, this is reduced to a relatively simple set of
ordinary differential equations. The reduction procedure is
the generalization of the elegant technique first developed to
describe the behavior of a self-gravitating fluid mass.
y Let n andv be the number density and velocity of the
plasma. They are related by the continuity equation

where w.=qB/mc is the particle cyclotron frequency. The
plasma frequency attains its maximum valuevat — /2.
This limit is often called the Brillouin flow. Thew, and .
are of the same order, and the inequaiy» 1 requiresw
<w.. The opposite case of a rare plasma with relativel
small w, corresponds to the guiding-center limit. Thepis

of the order ofwf)/wc, and is small compared with.. The
condition for the prolate equilibrium i®,<wp<w. an

In the case of the gibrid Paul trap with,=0, the equa- — TV(v)=0. (6)
tion for the rigid rotation frequency is
The motion of a cold plasma is expressed by the ideal

2_ 2 5 2
wp=(2a+wy—2er, (5) pressureless Euler equation
and the inequalityr>1 is required. Note that in the absence IV q 1
of a magnetic field, the thermodynamic equilibrium corre- E-I—(VV)V: EEJF EF’ (7)

sponds to a static ellipsoid. We also consider a more general

hydrodynamic equilibrium \//;/ithurqto. The rigid-rotor fre-  \yhere the applied trapping fordeis given by Eqs(1) and
quency must be less than'w, (trap radial frequendy In  (2) The space-charge electric figkd= — V 6 is related to the
the special case of fast rotation, betf?w, andw, are large  n mber density by the Poisson equation

as compared t@,. Then we assume that, is still high as
compared taw,. A¢p=—4mqgn. (8)

Let us now change from equilibrium to dynamics. Normal -~
modes of an elliptical plasma allow an analytical treatment AS for a plasma boundary, the condition for a smooth
[23]. Each mode is described by two positive integérarid ~ SurfaceS(x,t) =const to be the boundary of the moving fluid
m), with I=m. The indexm refers to a familiar exphe) IS
azimuthal dependence of perturbed quantities. The irdex JS
describes the variation of the plasma boundary alongzthe — +(VV)S=0. 9
direction. Thel =1 modes correspond to the center of mass ot
motion. The quadrupolée=2 modes are of particular inter-

est, because they provide information on the plasma densiat?n Equations(6)—(9) provide a full description of the plasma

otion. They are related to the laboratory Cartesian frame
X,Y,Z). In some instances it is also useful to consider a body

’ ! ’ H
A goal of this research is to explore a fairly simple ap- frame referencex(’,y’,z'). The coordinates of the same

proach to quadrupole modes first suggested by D{@#).  Point in these frames are related ky=R;X;, whereRis
Following him, we derive a set of nine equations describingS®Me orthogonal matrix. This can be expressed explicitly in
the ellipsoid orientation, the semiaxes, and the internale™Ms Of the Euler angles. Now we seek a special solution of
plasma motion. Then we calculate two different typed of EdS:(6)—(9), which is subject to following conditions.

=2 plasma oscillations, namel{2,0) and (2,2 modes. The (i) A plasma takes the form of an elllps_0|d_. With respect
former one corresponds to cylindrically symmetric oscilla-1© l2boratory axes, the plasma boundary is given by

and aspect ratio. In this paper, we consider the nonline
behavior of quadrupole oscillations.

tions in the length and radius of the ellipsoid. The latter one G oxxi=1
corresponds to a plasma that has been flattened to a triaxial R
ellipsoid with a principal axis oriented alorg where the symmetric, positive-definite ten§bdescribes the

We find that these quadrupole modes are equivalent to shape and orientation of the ellipsoid. With respect to the
set of three coupled nonlinear oscillators. Then we employody axegprimed variables the plasma surface satisfies the
an inequality 8>1. The oscillator corresponding to the equation
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12 ~ d
LI A W’=QQ’Q‘1+d—?Q_1, (16)

whereQ=diag(a,b,c).

We see that the internal plasma motion depends on semi-
axes, and is characterized by the ved®f. In the case of
matrix transposed t& constants, b, andc, the particles follow closed orbits. The

(i) The number density is uniform, and depends on timgdotation period is 2r/Q)'. For time variant semiaxes, the

only: n=n(t). For the ellipsoidal plasma, it can be put up in particles do not return to their original position, afd is
the form not the frequency vector. In any evefi}, can be expressed

in terms of vorticity.
To obtain the expression fo one should employ the

(100 corresponding transformation rule. Note that the behavior of
the velocity matrix is more complicated, as compared to the
other tensors. The point is that the rotation from the lab
Jrame to the body frame depends on time. The dependence
cannot be ignored when calculating particles velocity. x et
and x’ be the coordinates of the same particle. Taking the
time derivative ofx’ = Rx, one can derive the transformation

Ei=47anAinj ) (11) rule

where a(t), b(t), andc(t) are unknown functions. Then
G'=diag@ 2b2,c ?), and, in accordance with the stan-
dard transformation rul&s=R'G’R, where R" denotes a

n(t)= 4qabc’

whereN is particle number. What is more, it is well known
that a space-charge electric field within a uniformly charge
ellipsoid is the linear function of position. It can be ex-
pressed in the form

where the dimensionless tensar depends orc. The ex- W=RT(W' +&')R, (17

plicit expression for the electric field can be derived initially

along the body axes. In the body frame the space-charggherew’=R(dR"/dt) is an antisymmetric tensor. Therefore

potential within a uniformly charged ellipsoid is it is dual of some vectow’, which is recognized as the
rotation frequency vector of the body frame along the body

* x'? y'? axes. The desired expression ffis obtained by inserting
¢:Wq”ab0fo Y e bree Eq. (16) into Eq. (17).
It appears that the listed conditions do not contradict each
2/2 dé other. What is more, the basic equations reduce to a self-
- > > > . (12 consistent system of ordinary differential equations with no
c?+ &) V(@2 + &) (b*+§)(c%+¢) spatial dependence. To show this, one should substitute

v=Wx andS=x"Gx, into Egs.(6)—(9), and eliminate the
dependence. The calculations are left to the reader. Details
are similar to those of Ref24]. Equation(7) results in a
single matrix equation foQ=diag(a,b,c). The remaining

Following Ref.[20], we introduce quantitiekandA;, so to
put Eq.(12) into the form

— _ 12__ 12__ 12
$=mqn(l = AX""=Agy' = Agz'%). (13 equations are satisfied identically. After some effort we are
In line with Eq. (11), we see that in the body framé&’ left with
=1diag(A;,A,,A3). In the lab frame\ =RTA'R. The func- &0 4o do Y
tionsA;(a,b,c) can be written in terms of elliptical integrals, . (a)r_+ =0 |+ i+;)r 210+0Q
as listed in the Appendix. dt? dt = dt dt
(iii) The fluid velocity is a linear function of position, .
daQ’" A A N

vi:Winji (14) X W‘i‘ﬂ 2 +2w QQ +wcb
whereW(t) is 3X 3 matrix (velocity tensoy. It can be easily -, dQ A, 20y~ 47g’n ,
calculated in the body frame. To begin with, let us assume X| @' Q+ HJFQQ +apU'Q= m A'Q,

that in the body frame the plasma rotates with some given
frequency vectof)'. Thereforev’' = Q' Xx". In other words
W'=0Q’, where )’ is an antisymmetric pseudotensor of
rank 2, which is dual of)’. In Cartesian coordinatd25],

(18

whereU’ =RUR', b’ =RbRT, and the antisymmetric tensor
b is dual of a unit vector parallel to the magnetic field.

0o -0, Q) Therefore, we have nine equations for the ellipsoid semi-

. . , axes,w’ and(Q)'. In the case of trapped plasma, these were
0= Q, 0 —-0,. (15 first investigated by Dubif24]. Equation(18) closely re-

—Q)’/ Q) 0 sembles the equation of motion for a self-gravitating ellip-

soidal fluid mass originally derived by Riemarisee[20]
As to a general flow with linear velocity within the ellip- and references cited thergirHowever, the presence of the
soid, the expression faf' can be written as a simple gen- external trapping field significantly complicates the problem.
eralization of the case of pure rotatif26], The point is thab’ as well asJ’ depends ofR components.
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Therefore, one is forced to consider an explicit expression As to the plasma aspect ratio, in the case of the ellipsoid
for R. It can be taken in terms of the Euler ang|@3], and  of revolution, A; can be expressed in terms of elementary
Eq. (18) must be supplemented by three Euler equations fofunctions. By doing this and assuming tleat b<c, one can
w'. easily derive Eq(3) from Eq. (21).

The difficulties can be overcome when considering equi-
librium configurations withd/dt=0. As to the nonlinear dy-
namics, there seems to be only one case which promises ) o ) )
significant progress. Assume that the ellipsoid is oriented The goal of this section is to describe the behavior of the
with a principal axis along the magnetic field, which is par-Prolate ellipsoid with the longest principal axis oriented
allel to the trap symmetry axis. Now the rotation from the lab@long the magnetic field. To begin with, we note that Egs.
frame to the body frame does not change either U. This (22) suggest the introduction of a notation
eliminates the Euler angles. The vectess and Q' should
also be oriented along the magnetic fiéllde z axis). Under
these assumptions the system is reduced to a five relatively
simple equations. The diagonal elements of @®) are Then, by taking the sum and the difference of E4®) and

(20), we put them in the forms

IIl. NONLINEAR OSCILLATIONS

We

5 +w, Q0.

w+ =

d2a 2 ’r2 ’2 ’ ’
W-f—(awo—wz —Q)%%a-2w,Qb—w. 2 Yy o
@(a-i- b))+ (w5g— w%)(a+ b)=m(aA1+ bA,),
o
X (wjat Qb = As, (19 @3
2 o
~2_ 2
d2b —2(a—b)+(wo—w_)(a—b)=m(aA1—bA2),
F-f—(awg—wéz—ﬂéZ)b—ZwQQQa—wC dt (24
o where
X(Qza+ wzb):EAZ’ (20) _ 1
2_ 2 2
wo=awy Tt ch
d’c 5 o
FJF ®pC= 5o A3 (21)  depends on the trap parameters only.

whereo=3g°N/m.

The quantitiesA; can be expressed in terms of elliptical
integrals. In the limit that one principal axis becomes very

long, these expression are simplified. By takiap finite

Four out of six off-diagonal elements are identically Zero. . 1o in line with Eq. (12), we find

By taking the sum and difference of the remaining two, we

bring them to the integrable forms 2b 2a
d " Al:m, Azzm, A3:O. (25)
_[ S +w,+Q;|(a+b)?|=0, . . . -
dt[\ 2 InsertingA; , into Egs.(23) and (24), and introducing new
variables
d||w. , , )
a ?+wz—Qz (a_b) =0. (22) u:a+b _a_b
V2 ' 2

This allows us to eliminate», and Q). . Finally we are
given the three second-order differential equations for thehe following two equations are found:
ellipsoid semiaxes. In general the system is not integrable.

The only known integrable case corresponds to the ellipsoid d?u ~ o
of revolution in the guiding center lim[24]. In the remain- Fﬂwo—m)u:a (26)
ing part of the article, we describe another integrable case
corresponding to a triaxial prolate ellipsoid wighb<<c. )

Before we proceed, it is appropriate to derive equilibrium d_v + (92— w2 )p=0 27)
conditions (3)—(5). For the rigid-rotor equilibriumQ_,=0 dt? o '

and w,=w,. By dropping the time derivatives and taking

the sum of Eqs(19)—(21), we obtain According to Eq.(22) the quantitieso . can be expressed as

wo

M

u2

ws=—2w,(wc+w,)+(2a+1)wg. _~ v
21
v

w+=:uo w_ (28

Now we recall that for the Penning trap=— % and for the

Paul trapw.=0. wheren and v are the constants of integration.
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System(26)—(28) must be accomplished by the equation when calculatingi(t). This makes Eq(26) integrable. Tak-
for c(t). Unfortunately, the approximatioA;=0 does not ing u(0)=u,, anddu/dt(0)=0, the following solution is
lead to a reasonable conclusion. We need a more accurateund:
expression, containing/c andb/c. Surprisingly, the calcu-
lation of such an expression involves rather sophisticated _ fu udu

mathematical techniques. The details can be found in the wot= .
Appendix. The resulting equation is Hmax wu? 20 u
(uzmax_ UZ) U= —— +Tu2|n
uﬁ"lax Cw(z) Umax

+w§c=§(ln2fc—l). 29 (31)

d?c
dt

Therefore we are left with a direct integral representation

Now we are able to give a full description of nonlinear ., u(t). The frequency of the small oscillations read?

oscillations. Recall that the (2,2) mode corresponds to a ,~, " B 2 a~2 B .
spheroid that has been flattened to a triaxial ellipsoid, with q Awo— wp. Foru=0 we havew,= 2wy andw=w, . This

. o N case corresponds to a spheroid at the Brillouin lif28&].
principal axis oriented along This mode corresponds 0 Eq. g4 her simplification can be achieved in the guiding cen-

(27), and is separated from the others even in a nonlineag jimit. we will show this by taking the advantage of the

regime. The equation can be integrated in terms of elemeny,mijonian technique. Equatior26) is related to the
tary functions. The period of oscillations is independent of.y niitonian

their amplitude. Fory=0, the oscillations are harmonic.

Otherwise v (t) does not change its sign. One can put H=Hg+Hin,
2 2 2 2
v mingvz(t) SUmaxr Umadmin™ VZ' where
fTaklggdv/dt(O)zo, v(0)=vnax. the following solution is 02 Z)g , 2 o 242c
ouna: Ho=—5+ 5| u+—|, Hp==In :
2 2 u? c u
2
UmaxT Umin Umax— U mi ~
p(t)= — M, M Meos2wet.  (30)

The ratio Hy, /H, is of order w2/ w3. For the Penning
trap, the ratio is small in the guiding center limit. For the
For v=0 the quantityv,,=0; then positive and negative Paul trap, it is small for the fast rotating spheroid. If this is
solutions result irv =v ,,,c0Swt. It is of interest that even the case, the right-hand side of Eg6) is a small perturba-
in the limit of small oscillations there are two different fre- tion. By dropping it, one can write the expression fqt)

quenciesw= 2w, for v#0, andw= w, for v=0. The latter ~Much as for (t). The only difference is that negative solu-

case corresponds to a spheroid. tions are not allowed. For example, for smallthe solution
Instead of Eq(27), one may prefer to consider a Hamil- takes the formu=u,,,Jcosw|.
tonian Now our goal is to take into account the corrections con-
5 cerned with the right-hand side of E@®6). We will see that
v? wé ) 2 a nonlinear coupling of radial and axial oscillations results in
H=Z+S5 v+ 2 some frequency shift.

Let us introduce new canonical variablek ) instead of
Since the frequency of the mode is unaffected by the ampli¢u,u). The transformation is described by the following gen-
tude, it is immediately obvious that, = H/(2w,) is an adia-  €rating function:

batic invariant. It can be put into the form
~ 43,
~ S(J,u)=wq ——u ——Zdu.
@o (O] u

JU:T( ﬁmax_"vﬁﬂn)'

o _ The equationsy=dS/3J andu=4S/au yield
The quantity is conserved even if the trap parameters are

time variant. ( 2

— u?, (32

2J

Let us turn to the(2,0) mode corresponding to cylindri- 2_2‘]
i &Y ) . . u“=—+cosy

cally symmetric oscillations in length and in radius of the o
ellipsoid. It is described by Eq$26) and (29). 0

In general, a nonlinear coupling between the oscillations s ~2
in length and in radius of the ellipsoid may result in a com- Dl = u_+ ®o
plicated stochastic dynamics. Fortunately, the case of elon- 2 2
gated spheroid is much more simple. The conditions of pro-
late equilibrium, which were listed in Sec. |, show thafis  This puts the Hamiltonian into the form
small as compared with,. Therefore the radial oscillations
are at a much higher frequency than the axial oscillations. In In 2\2¢
other words, one can consideft) as a constant parameter u(Jd,y)’

wo

2
M
u?+ —

iz (33

~ o
H=2woJ+—
Cc
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where u(J,#) should be taken from Eq32). Since Hiy
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Now let us turn to more detailed investigation of Eg9)

describes a small perturbation of the periodic motion, ondor the length of the spheroid. The related Hamiltonian is

can averagéd;,, over :

2\/50

Hint'9<Hint>=z|ri — :
\/( Uwg)I+(1/2)| |

(34

The procedure is the canonical version of the method of av;
eraging[29]. It puts the radial oscillations into an integrable

form

dJ
a_ ’

g

dyp -~
_:2(1)0_—,.,.
dt c(23+ | | wo)
The quantityJ is an adiabatic invariant. By takingmi,

<U(t)<Umay in line with expression33) for J(u,u), the fol-
lowing equations are found:

w
2 2 _ 2 _ro, 2 2
Unalmin= a5 J= 4 (Uaxt Unin) -

Employing Eq. (32 for u(J,#) and assumingdu/dt(0)
=0, u(0)=upayx, We derive the final expression falt),

2 2 2 2
u U u — U
uz(t) — max min max min Coswt, (35)
2 2
where
- 20
w=2wg— = (36)
C(Umaxt Umin) “@q

g
—In
c

2t 3

2./2¢
L

62 w(z)cz
H=Hc+Hy=

The quantitieH andH,,, are of the same order. Neverthe-
less, the latter term oscillates rapidly and should be averaged.
Note that Eq.(29) containsu(t) under a logarithmic sign.
Therefore, it is not necessary to apply sophisticated equation
(31) in order to averagél;,; over the radial oscillations. One
can use the guiding center express(84) instead. The result
can be put into the form

H o'l 4\/§C
< int>_ c r]umax_" umin-
Therefore, we are given the following equation:

4+/2¢c

——1].
umax+ Umin

(39

—rwZe=Z|n
a2 0 ¢?

The dynamics ot(t) is integrable, given by the integral

c dc
Cmax\/z[ u eff( Cmax) -U eff( Cmax)] ,

(Dot:

with

2 o 4\/§C

c
Uei(C)= =+ ——In————
¢ 2 wCZ)C Umint Umax

is small compared with @&,. Then Eq.(36) can be put into
the equivalent form

80

IR
C( umax+ umin)

(37

2_ 72
w =4wj

dropping the time derivatives. This leads to a simple gener-
alization of Eq.(3). The frequency of small oscillations is
w?=3w3—(1/cd)o. The latter term is less then the former
by a factor of Ing.

To supplement the theory, we obtained several numerical
solutions of the exact Eq$21), (23), and (24). In the re-

Equation(37) is the best choice. Note, that for the small maining part of this section the expressions are written in

oscillationsu,,+Umin €an be replaced by twice the equilib-

rium value ofu. Then Eq.(37) takes the formw?=4w3

terms of the dimensionless variables. Times are normalized
by 1/wo, and distances byof w3)*®. The normalized vari-

— w5, which is valid even in the case of comparably valuedables are denoted by an overbar.

wp and w,. It follows that Eq.(37) is a reasonable approxi-
mation near the Brillouin limit. Moreover, it is valid for a
strongly nonlinear regime with, ;5,2 Unin -

In reality, one may prefer to average the radial frequenc;Iio

over the oscillations in length of the spheroid. Then &)

should be averaged as well. The simplest approximation is

thatc(t) varies harmoniously from minimal to maximal val-
ues. Then one can see thdt/c) should be replaced by
(Cmamin)~ 2. Therefore, Eq(37) takes the form

80

(Cma)pmin) 1/2( umax+ umin)2

w?=40f- (38)

We start with the spheroidal plasma. In the case or radial
oscillations, Eq(24) is satisfied identically. In addition, the
quantitiesA; can be expressed in terms of elementary func-
ns. By doing this one can put EqR1) and(23) into the
orms

du? — w2 1 ( 1 1—e2I 1+e 0
R — == — n———|,
dt? 5 cule? 2e8 1l-e
d@ _ 1/ 1 1+e 1 "
g Tale e ) W

This simple relation is of special interest, because it directiyVheree=wg/wg, and the eccentricitg= V1 -u?/(2¢%).
links the radial frequency with the ellipsoid shape and par- Equations(40) and(41) have been integrated numerically

ticle number.

for several cases. Once the equilibrium valuesu@f) and
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4 ' ' ' ' ' ' The asymmetric mode of the spheroid was exited by set-

c(t) ting nonzerodv_/dT(O). Now thequantitiesA,; are calculated
31 1 in a more cumbersome way, and the computing involves Eq.
(2,0) mode (24) in line witﬁEqs.(Zl) and(23). The theoretical value of

2r a(t)=b(t) 1 the frequencyw=1 was found to be in a good agreement
with that obtained from the computing.

Several examples of triaxial equilibrium ellipsoids were
considered in addition to the spheroidal plasma. In summary,
0 10 20 30 40 50 60 Eq._(38)_ was f(_)und to be a gqo_d approximatiqn for th_e radial
oscillations, either in the guiding center regime or in a re-
gime which is close to the Brillouin limit.

normalized time

FIG. 1. A numerical solution of Eq440) and (41) for oscilla-
tions in radius and length of a prolate plasma spheroid. The upper
curve is one-half the normalized plasma IenE(E), and the lower
curve is the radiug(t)=b(t). An equilibrium spheroid withu, We have studied oscillations of the one component low-
=0.5 andcy=4 was perturbed by imposindu/dt(0)=2. The  €nergy plasma confined in a harmonic Penning trap or in a
possibility of a two-time-scale approach is clearly observable. Thgadio-frequency Paul trap. The plasma equilibrium state is a
oscillations are highly nonlinear, but the system shows a coherentniform density ellipsoid of revolution. Normal modes cor-
(integrable behavior. responding to quadrupole perturbations of this plasma are of

particular interest, because they provide a nondestructive di-

c(t) were specified, we calculated correspondingind e, 29nOstic tool.

Then the radial oscillations of the spheroid were excited by The quadrupolie osmllauons ofa trapped p'aS”.‘a can be
L — = calculated analytically even in the nonlinear regime. The
settingdu/dt(0) nonzero.

. . o . theory is based on the analogy between the one-component
A typical example of a numerical solution is shown in

. hi h I f1h . h lasma and the massive fluid. The oscillations are described
Fig. 1. In this case the values of the semiaxes were chosen ES/ a relatively simple Hamiltonian system, originally derived

such a way thab, andw, are of the same order. Therefore, by Dubin[24]. In general the dynamics is stochastic. Never-
the equilibrium spheroid is close to the Brillouin limit. Nev- the|ess, in some particu|ar cases the System can be near|y
ertheless the large difference in the frequencies of the radightegrable. We have found and studied in detail a case of
and axial oscillations is clearly observable. A major initial regular behavior.
value ofdu/dt(0) leads to a highly nonlinear motion with It is of interest that a reduced version of the Hamiltonian
Umax/Umin=10%. Nevertheless, the nonlinear coupling is corresponding to an infinite elliptical column turns out to be
small. This suggests that the system is nearly integrable. integrable in quadraturd80]. This suggests considering the
For each numerical solution we determined the maximatynamics of the elongated ellipsoid.

and minimal values ofi(t) and c(t). Then the averaged We investigated the possibility for a semiaxis to be large
frequency of the radial oscillations was compared with tha?S compared to the others axes. It appears that prolate equi-
predicted by a dimensionless version of E88). Some re- librium can be observed in the Penning trap both in the Bril-
sults are shown in Fig. 2. For clarity we present the predictedouin zone and in the guiding-center limit. For the Paul trap,
values of the frequency as smooth curves. The reader shoulfie elongated spheroid exists only if the radio-frequency

keep in mind that in reality all data were discrete sets oftr@pping force is supplemented by the electrostatic one, so as
points. to provide strong anisotropy.

Then we have considered the dynamics of an ellipsoid
with a principal axis oriented along the magnetic field. The

IV. CONCLUSION

§ 1.9 = ] system is equivalent to the three coupled nonlinear oscilla-
LR M ] tors. One oscillator corresponds to the asymmetric radial per-
;i:f 1 7 b e ] turbation of the spheroid. The others describe symmetric ra-
S D_—"] dial and axial oscillations. o _
I | — ] _ In the Ilmlt o.f.an elongated eIhpsqd, the matter is con-
I S (2,0) mode | siderably simplified. The asymmetric mode becomes sepa-
5 o rated from the others, and is reduced to quadratures. The
10121.41.61.8202.22.4 other two oscillators are still coupled, but the radial oscilla-
relative amplitude tions have much higher frequencies than the axial ones. We

solved this problem by means of the method of averaging.

FIG. 2. A normalized frequency of the radial oscillations of a The study results in simple analytical expressions for the
prolate plasma spheroig@ots is compared with thatsolid lineg frequencies and the ellipsoid semiaxes.

predicted by Eq(38). The relative amplitude isi a,/U. Equilib-

rium spheroids with(A) up=1 andc,=6, (B) uy=0.4 andc,=8,

(C) up=0.5 andc,=8, and(D) u,=0.5 andc,=4 were perturbed
by settingdu/dt(0)+0. Case(D) is close to the Brillouin limit. The author gratefully acknowledges Dr. A. M. Ignatov
Nevertheless, a simple guiding center formula provides a reasorand Dr. S. V. Bulanov for useful discussions, and for careful
able agreement with the computing. readings of the manuscript.
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APPENDIX is an elliptic integral. By puttingc—~, we see that both

In this section we calculata; in the limit that one prin- quantitiess andk’=y1—k* are small. The further calcula-
cipal axis becomes very long. A first approximation is givention is not immediate. The point is that the regglar expansion
by Eq. (25). It corresponds to an infinite column with an for F(6,k) near the point £/2,1) can be obtained only if
elliptical cross section. This approximation is sufficient for ©n€ of the two arguments is fixed.
radial oscillations, but is inadequate to give a description of 10 Proceed, we employ a relati¢81]
axial oscillations. Here the calculation is carried out to a
higher accuracy. F(0,k)+F(0* ,K)=F(m/2k),

Recall that in terms oA, Eq. (12) for the space-charge S o
potential within a uniformly charged ellipsoid takes the form Which is valid if

of Eq. (13), where
a. (13 k'tangtan6* =1.

) dg
I=abcf . Fortunately, in our case taitf =a/\b?>—a? is independent
0 \/(a2+§)(b2+§)(02+§) of c. Then,
Only I(a,b,c) needs further consideration, because of the 2ab a
relations[20] -7 _ i
I oSS F(m/2k)—F arcsnB,k .
I 14l I 14l I 19l

v Apgm S, AT < [ i .
1= 2 aoa 212 b ab 3T2 cac Now both m;egrals can be expanded in a standard manner
The calculation results in

One can assume that<b<c and defined e [0,7/2] andk

21 12
€[0,1], so that I 4c a +b 4c B ab
—=In + n 1)/ +—+---.
2ab a+b 402 a+b 402
a_ 5 cz—bz_k2
¢ e LT Then
By replacing the variables 2b a2+ b2> b2 ab/ 4c )
A= 1+ - - -1/,
2 2 2
g , . g CO§5 a+b 4c 2¢C C a+b
[ 1 - = . 1
c?  sirfe _— )
2a a+b a- ab 4c
; : A= 1+ ————|1In -1/,
we put the expression fdrinto the form a+b 4c2 2c2 2| a+b
| 2ab F(m/2— 6,k
3 C2 a+b ’
where
) 40 These are the desired generalizations of EBS). The ex-
FOK= | ———— pression forA; is essential to the calculation of axial oscil-
0 \J1—-k?sirfe lations.
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