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Nonlinear oscillations of trapped plasmas

Sh. G. Amiranashvili
General Physics Institute, Moscow 117 942, Russia

~Received 1 October 1999; revised manuscript received 15 February 2000!

A uniform density ellipsoid is an equilibrium state of a low-energy non-neutral plasma confined in a
harmonic trap. Normal modes of this plasma can be detected; they provide a nondestructive diagnostic tool.
The low-order quadrupole modes are particularly simple. They can be calculated analytically even in a non-
linear regime. In general, nonlinear coupling leads to the complicated stochastic dynamics. In special cases,
regular solutions can be found. It is shown that the behavior of an elongated ellipsoid oriented along the trap
symmetry axis is nearly integrable. The study results in simple analytical expressions for frequencies and
ellipsoid semiaxes.

PACS number~s!: 52.25.Wz, 32.80.Pj, 52.35.Fp
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I. INTRODUCTION

A non-neutral plasma@1# is a collection of charged par
ticles identical in sign of the charge. It exhibits many of t
properties of neutral plasma, such as the Langmuir wa
and the Debye shielding@2#. On the other hand, there ar
noticeable differences. The non-neutral plasma has exce
confinement properties@3#, and can be cooled@4# without
recombining positive and negative particles.

We study a confined, low-energy, one-species plas
cloud. This sort of a plasma has a variety of applicatio
including storage of positrons@5# and antiprotons@6#, high-
resolution spectroscopic measurements on ions@7#, and ex-
periments on vortex dynamics@8# and Coulomb crystals
@9,10#. The cloud storage time is enough to observe the th
mal equilibrium state and normal modes of oscillations@11#.
Being interesting on their own, trapped plasma oscillatio
provide a nondestructive diagnostic tool. The detection
these modes is used as a probe of plasma properties su
density and temperature@12,13#.

Studying the properties of a non-neutral plasma, one
forced to take into account an external trapping field. L
m,v, andq be the particle mass, velocity, and charge, resp
tively. The external force per particle is

F52¹Uext1
q

c
v3B, ~1!

whereB5Bẑ is the uniform magnetic field, andUext is the
potential of the trapping force. The potential is quadra
assuming that the plasma size is smaller than the distanc
the trap electrodes. If this is the case, the potential is

Uext5
1

2
mv0

2Ui j xixj , ~2!

wherev0 is some constant related to the trapping force
tensity, and the dimensionless tensorU depends on trap ge
ometry. The summation is overi , j 51,2, and 3. In the case
of cylindrically symmetric electrodes, the potential ener
per particle is
PRE 621063-651X/2000/62~1!/1215~9!/$15.00
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Uext5
1

2
mv0

2~ax21ay21z2!,

wherea is the anisotropy parameter andv0 is seen to be the
frequency of axial oscillations of a single particle. The Ca
tesian coordinatesx,y, andz are taken with respect to labo
ratory axes, and measured from the center of the trap.

The two most popular types of traps are the Penning t
@14# and the radio-frequency Paul trap@15#. For the Penning
trap the confining force is electrostatic. The parametera5
2 1

2 , and the potential well confines particles in thez direc-
tion only. The applied magnetic field provides confineme
in a radial direction. For the Paul trap,B50. Charged par-
ticles are confined by an inhomogeneous oscillating elec
field. For the averaged ponderomotive force,a5 1

4 . Hybrid
traps with arbitrarya were also studied@16,17#. As a→`,
the plasma becomes an infinitely long cylindrical colum
The opposite case is a thin disk asa→0.

Let us assume that the plasma temperature is low, and
density is sufficiently large so that the Debye length is mu
smaller than the size of the cloud. The plasma therefore
sharp boundaries@18#. The equilibrium state of a cold
trapped non-neutral plasma can be described by a cold-
theory @19#. The cloud takes the shape of an ellipsoid
revolution. It is uniformly charged and rotates rigidly abo
thez axis. The theory was verified by the experiment@11,12#.
For very low temperatures, the density is not truly const
due to correlations in the particle positions. However, as lo
as the interparticle spacing is small compared to the cl
dimensions and is small compared to the wavelength of
plasma modes, the cloud can be treated as a constant-de
plasma.

The theory can be understood by referring to the kno
results on the elliptical equilibrium of the rotating massi
fluid @20#. The analogy is clear. Both systems have the
verse square law of the interparticle force. The Coriolis fo
~in the rotating frame of reference! acts like an external mag
netic field. In addition, the potential of a centrifugal force
quadratic, as is the potential of the external trapping force
can be shown that elliptical equilibrium is also possible in
quadrupole trap.

Let b denote the ratio of the axial length to the diame
of the plasma. In this paper, we focus on the behavior o
1215 ©2000 The American Physical Society
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1216 PRE 62SH. G. AMIRANASHVILI
prolate spheroid withb@1. Before we proceed, it is appro
priate to list the conditions for prolate equilibrium. The a
pect ratiob is related@21# to the plasma frequencyvp and
the trap axial frequencyv0. Assumingb@1, the relation is

v0
2

vp
2

5
ln~2b!21

b2
. ~3!

Therefore,v0 should be small as compared tovp . This
leads to restrictions both on the trap parameters and on
plasma rotation frequency.

Let v r denote the rigid rotation frequency. In the case
the Penning trap, the expression forv r is @22#

vp
2522v r~vc1v r !, ~4!

wherevc5qB/mc is the particle cyclotron frequency. Th
plasma frequency attains its maximum value atv r52vc/2.
This limit is often called the Brillouin flow. Thenvp andvc
are of the same order, and the inequalityb@1 requiresv0
!vc . The opposite case of a rare plasma with relativ
smallvp corresponds to the guiding-center limit. Thenv r is
of the order ofvp

2/vc , and is small compared withvc . The
condition for the prolate equilibrium isv0!vp!vc .

In the case of the gibrid Paul trap withvc50, the equa-
tion for the rigid rotation frequency is

vp
25~2a11!v0

222v r
2 , ~5!

and the inequalitya@1 is required. Note that in the absen
of a magnetic field, the thermodynamic equilibrium corr
sponds to a static ellipsoid. We also consider a more gen
hydrodynamic equilibrium withv rÞ0. The rigid-rotor fre-
quency must be less thana1/2v0 ~trap radial frequency!. In
the special case of fast rotation, botha1/2v0 andv r are large
as compared tovp . Then we assume thatvp is still high as
compared tov0.

Let us now change from equilibrium to dynamics. Norm
modes of an elliptical plasma allow an analytical treatm
@23#. Each mode is described by two positive integers (l and
m), with l>m. The indexm refers to a familiar exp(imu)
azimuthal dependence of perturbed quantities. The indl
describes the variation of the plasma boundary along thz
direction. Thel 51 modes correspond to the center of ma
motion. The quadrupolel 52 modes are of particular inter
est, because they provide information on the plasma den
and aspect ratio. In this paper, we consider the nonlin
behavior of quadrupole oscillations.

A goal of this research is to explore a fairly simple a
proach to quadrupole modes first suggested by Dubin@24#.
Following him, we derive a set of nine equations describ
the ellipsoid orientation, the semiaxes, and the inter
plasma motion. Then we calculate two different types ol
52 plasma oscillations, namely,~2,0! and~2,2! modes. The
former one corresponds to cylindrically symmetric oscil
tions in the length and radius of the ellipsoid. The latter o
corresponds to a plasma that has been flattened to a tri
ellipsoid with a principal axis oriented alongẑ.

We find that these quadrupole modes are equivalent
set of three coupled nonlinear oscillators. Then we emp
an inequality b@1. The oscillator corresponding to th
-
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asymmetric mode turns out to be separated. What is m
the solution has a simple exact expression in terms of
ementary functions. We are, therefore, left with a full d
scription of the finite amplitude version of asymmetric mod
Then we turn to coupled radial and axial oscillations. For
nately, radial oscillations of the prolate ellipsoid are at
much higher frequency than the axial ones. The resona
does not occur, and the system is nearly integrable. To s
the equations, we use the method of averaging in its can
cal ~Hamiltonian! form. Finally, we are left with simple ana
lytical expressions for nonlinear modes and their frequ
cies.

II. BASIC EQUATIONS

In this section we consider the general set of hydro
namic equations for plasma motion. In the case of quad
pole oscillations, this is reduced to a relatively simple set
ordinary differential equations. The reduction procedure
the generalization of the elegant technique first develope
describe the behavior of a self-gravitating fluid mass.

Let n and v be the number density and velocity of th
plasma. They are related by the continuity equation

]n

]t
1¹~nv!50. ~6!

The motion of a cold plasma is expressed by the id
pressureless Euler equation

]v

]t
1~v¹!v5

q

m
E1

1

m
F, ~7!

where the applied trapping forceF is given by Eqs.~1! and
~2!. The space-charge electric fieldE52¹f is related to the
number density by the Poisson equation

nf524pqn. ~8!

As for a plasma boundary, the condition for a smoo
surfaceS(x,t)5const to be the boundary of the moving flu
is

]S

]t
1~v¹!S50. ~9!

Equations~6!–~9! provide a full description of the plasm
motion. They are related to the laboratory Cartesian fra
(x,y,z). In some instances it is also useful to consider a bo
frame reference (x8,y8,z8). The coordinates of the sam
point in these frames are related byxi85Ri j xj , whereR is
some orthogonal matrix. This can be expressed explicitly
terms of the Euler angles. Now we seek a special solution
Eqs.~6!–~9!, which is subject to following conditions.

~i! A plasma takes the form of an ellipsoid. With respe
to laboratory axes, the plasma boundary is given by

Gi j xixj51,

where the symmetric, positive-definite tensorG describes the
shape and orientation of the ellipsoid. With respect to
body axes~primed variables!, the plasma surface satisfies th
equation
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x82

a2
1

y82

b2
1

z82

c2
51,

where a(t), b(t), and c(t) are unknown functions. Then
G85diag(a22,b22,c22), and, in accordance with the sta
dard transformation ruleG5RTG8R, where RT denotes a
matrix transposed toR.

~ii ! The number density is uniform, and depends on ti
only: n5n(t). For the ellipsoidal plasma, it can be put up
the form

n~ t !5
3N

4pabc
, ~10!

whereN is particle number. What is more, it is well know
that a space-charge electric field within a uniformly charg
ellipsoid is the linear function of position. It can be e
pressed in the form

Ei54pqnL i j xj , ~11!

where the dimensionless tensorL depends onG. The ex-
plicit expression for the electric field can be derived initia
along the body axes. In the body frame the space-cha
potential within a uniformly charged ellipsoid is

f5pqnabcE
0

`H 12
x82

a21j
2

y82

b21j

2
z82

c21j
J dj

A~a21j!~b21j!~c21j!
. ~12!

Following Ref.@20#, we introduce quantitiesI andAi , so to
put Eq.~12! into the form

f5pqn~ I 2A1x822A2y822A3z82!. ~13!

In line with Eq. ~11!, we see that in the body frameL8
5 1

2 diag(A1 ,A2 ,A3). In the lab frameL5RTL8R. The func-
tionsAi(a,b,c) can be written in terms of elliptical integrals
as listed in the Appendix.

~iii ! The fluid velocity is a linear function of position,

v i5Wi j xj , ~14!

whereW(t) is 333 matrix ~velocity tensor!. It can be easily
calculated in the body frame. To begin with, let us assu
that in the body frame the plasma rotates with some gi
frequency vectorV8. Thereforev85V83x8. In other words
W85V̂8, where V̂8 is an antisymmetric pseudotensor
rank 2, which is dual ofV8. In Cartesian coordinates@25#,

V̂5S 0 2Vz8 Vy8

Vz8 0 2Vx8

2Vy8 Vx8 0
D . ~15!

As to a general flow with linear velocity within the ellip
soid, the expression forW8 can be written as a simple gen
eralization of the case of pure rotation@26#,
e

d

ge

e
n

W85QV̂8Q211
dQ

dt
Q21, ~16!

whereQ5diag(a,b,c).
We see that the internal plasma motion depends on se

axes, and is characterized by the vectorV8. In the case of
constantsa, b, andc, the particles follow closed orbits. Th
rotation period is 2p/V8. For time variant semiaxes, th
particles do not return to their original position, andV8 is
not the frequency vector. In any event,V8 can be expressed
in terms of vorticity.

To obtain the expression forW one should employ the
corresponding transformation rule. Note that the behavio
the velocity matrix is more complicated, as compared to
other tensors. The point is that the rotation from the
frame to the body frame depends on time. The depende
cannot be ignored when calculating particles velocity. Lex
and x8 be the coordinates of the same particle. Taking
time derivative ofx85Rx, one can derive the transformatio
rule

W5RT~W81v̂8!R, ~17!

wherev̂85R(dRT/dt) is an antisymmetric tensor. Therefor
it is dual of some vectorv8, which is recognized as the
rotation frequency vector of the body frame along the bo
axes. The desired expression forW is obtained by inserting
Eq. ~16! into Eq. ~17!.

It appears that the listed conditions do not contradict e
other. What is more, the basic equations reduce to a s
consistent system of ordinary differential equations with
spatial dependence. To show this, one should substitutn,
v5Wx andS5xTGx, into Eqs.~6!–~9!, and eliminate thex
dependence. The calculations are left to the reader. De
are similar to those of Ref.@24#. Equation~7! results in a
single matrix equation forQ5diag(a,b,c). The remaining
equations are satisfied identically. After some effort we
left with

d2Q

dt2
12S v̂8

dQ

dt
1

dQ

dt
V̂8D1S dv̂8

dt
1v̂8 2DQ1Q

3S dV̂8

dt
1V̂8 2D 12v̂8QV̂81vcb̂8

3S v̂8Q1
dQ

dt
1QV̂8D1v0

2U8Q5
4pq2n

m
L8Q,

~18!

whereU85RURT, b̂85Rb̂RT, and the antisymmetric tenso
b̂ is dual of a unit vector parallel to the magnetic field.

Therefore, we have nine equations for the ellipsoid se
axes,v8 andV8. In the case of trapped plasma, these w
first investigated by Dubin@24#. Equation~18! closely re-
sembles the equation of motion for a self-gravitating ell
soidal fluid mass originally derived by Riemann~see @20#
and references cited therein!. However, the presence of th
external trapping field significantly complicates the proble
The point is thatb̂8 as well asU8 depends onR components.
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Therefore, one is forced to consider an explicit express
for R. It can be taken in terms of the Euler angles@27#, and
Eq. ~18! must be supplemented by three Euler equations
v8.

The difficulties can be overcome when considering eq
librium configurations withd/dt50. As to the nonlinear dy-
namics, there seems to be only one case which prom
significant progress. Assume that the ellipsoid is orien
with a principal axis along the magnetic field, which is pa
allel to the trap symmetry axis. Now the rotation from the l
frame to the body frame does not change eitherb̂ or U. This
eliminates the Euler angles. The vectorsv8 and V8 should
also be oriented along the magnetic field~the z axis!. Under
these assumptions the system is reduced to a five relat
simple equations. The diagonal elements of Eq.~18! are

d2a

dt2
1~av0

22vz8
22Vz8

2!a22vz8Vz8b2vc

3~vz8a1Vz8b!5
s

2bc
A1 , ~19!

d2b

dt2
1~av0

22vz8
22Vz8

2!b22vz8Vz8a2vc

3~Vz8a1vz8b!5
s

2ac
A2 , ~20!

d2c

dt2
1v0

2c5
s

2ab
A3 , ~21!

wheres53q2N/m.
Four out of six off-diagonal elements are identically ze

By taking the sum and difference of the remaining two,
bring them to the integrable forms

d

dt F S vc

2
1vz81Vz8D ~a1b!2G50,

d

dt F S vc

2
1vz82Vz8D ~a2b!2G50. ~22!

This allows us to eliminatevz8 and Vz8 . Finally we are
given the three second-order differential equations for
ellipsoid semiaxes. In general the system is not integra
The only known integrable case corresponds to the ellips
of revolution in the guiding center limit@24#. In the remain-
ing part of the article, we describe another integrable c
corresponding to a triaxial prolate ellipsoid witha,b!c.

Before we proceed, it is appropriate to derive equilibriu
conditions ~3!–~5!. For the rigid-rotor equilibrium,Vz850
and vz85v r . By dropping the time derivatives and takin
the sum of Eqs.~19!–~21!, we obtain

vp
2522v r~vc1v r !1~2a11!v0

2 .

Now we recall that for the Penning trapa52 1
2 and for the

Paul trapvc50.
n

r

i-

es
d
-

ly

.

e
e.
id

e

As to the plasma aspect ratio, in the case of the ellips
of revolution, Ai can be expressed in terms of elementa
functions. By doing this and assuming thata5b!c, one can
easily derive Eq.~3! from Eq. ~21!.

III. NONLINEAR OSCILLATIONS

The goal of this section is to describe the behavior of
prolate ellipsoid with the longest principal axis oriente
along the magnetic field. To begin with, we note that E
~22! suggest the introduction of a notation

v65
vc

2
1vz86Vz8 .

Then, by taking the sum and the difference of Eqs.~19! and
~20!, we put them in the forms

d2

dt2
~a1b!1~ṽ0

22v1
2 !~a1b!5

s

2abc
~aA11bA2!,

~23!

d2

dt2
~a2b!1~ṽ0

22v2
2 !~a2b!5

s

2abc
~aA12bA2!,

~24!

where

ṽ0
25av0

21
1

4
vc

2

depends on the trap parameters only.
The quantitiesAi can be expressed in terms of elliptic

integrals. In the limit that one principal axis becomes ve
long, these expression are simplified. By takinga/b finite
andc→` in line with Eq. ~12!, we find

A15
2b

a1b
, A25

2a

a1b
, A350. ~25!

InsertingA1,2 into Eqs.~23! and ~24!, and introducing new
variables

u5
a1b

A2
, v5

a2b

A2
,

the following two equations are found:

d2u

dt2
1~ṽ0

22v1
2 !u5

s

cu
~26!

d2v

dt2
1~ṽ0

22v2
2 !v50. ~27!

According to Eq.~22! the quantitiesv6 can be expressed a

v15ṽ0

m

u2
, v25ṽ0

n

v2
, ~28!

wherem andn are the constants of integration.
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System~26!–~28! must be accomplished by the equati
for c(t). Unfortunately, the approximationA350 does not
lead to a reasonable conclusion. We need a more accu
expression, containinga/c andb/c. Surprisingly, the calcu-
lation of such an expression involves rather sophistica
mathematical techniques. The details can be found in
Appendix. The resulting equation is

d2c

dt
1v0

2c5
s

c2 S ln
2A2c

u
21D . ~29!

Now we are able to give a full description of nonline
oscillations. Recall that the (2,2) mode corresponds t
spheroid that has been flattened to a triaxial ellipsoid, wit
principal axis oriented alongẑ. This mode corresponds to Eq
~27!, and is separated from the others even in a nonlin
regime. The equation can be integrated in terms of elem
tary functions. The period of oscillations is independent
their amplitude. Forn50, the oscillations are harmonic
Otherwise,v(t) does not change its sign. One can put

vmin
2 <v2~ t !<vmax

2 , vmax
2 vmin

2 5n2.

Taking dv/dt(0)50, v(0)5vmax, the following solution is
found:

v2~ t !5
vmax

2 1vmin
2

2
1

vmax
2 2vmin

2

2
cos 2ṽ0t. ~30!

For n50 the quantityvmin50; then positive and negativ
solutions result inv5vmaxcosṽ0t. It is of interest that even
in the limit of small oscillations there are two different fre
quencies:v52ṽ0 for nÞ0, andv5ṽ0 for n50. The latter
case corresponds to a spheroid.

Instead of Eq.~27!, one may prefer to consider a Hami
tonian

H5
v̇2

2
1

ṽ0
2

2 S v21
n2

v2D .

Since the frequency of the mode is unaffected by the am
tude, it is immediately obvious thatJv5H/(2ṽ0) is an adia-
batic invariant. It can be put into the form

Jv5
ṽ0

4
~vmax

2 1vmin
2 !.

The quantity is conserved even if the trap parameters
time variant.

Let us turn to the~2,0! mode corresponding to cylindri
cally symmetric oscillations in length and in radius of t
ellipsoid. It is described by Eqs.~26! and ~29!.

In general, a nonlinear coupling between the oscillatio
in length and in radius of the ellipsoid may result in a co
plicated stochastic dynamics. Fortunately, the case of e
gated spheroid is much more simple. The conditions of p
late equilibrium, which were listed in Sec. I, show thatv0 is
small as compared withṽ0. Therefore the radial oscillation
are at a much higher frequency than the axial oscillations
other words, one can considerc(t) as a constant paramete
ate

d
e

a
a

ar
n-
f

li-

re

s
-
n-
-

In

when calculatingu(t). This makes Eq.~26! integrable. Tak-
ing u(0)5umax and du/dt(0)50, the following solution is
found:

ṽ0t5E
umax

u u du

A~umax
2 2u2!S u22

m2

umax
2 D 1

2s

cṽ0
2

u2ln
u

umax

.

~31!

Therefore we are left with a direct integral representat
for u(t). The frequency of the small oscillations readsv2

54ṽ0
22vp

2 . For m50 we havevp
252ṽ0

2 andv5vp . This
case corresponds to a spheroid at the Brillouin limit@28#.

Farther simplification can be achieved in the guiding ce
ter limit. We will show this by taking the advantage of th
Hamiltonian technique. Equation~26! is related to the
Hamiltonian

H5H01H int ,

where

H05
u̇2

2
1

ṽ0
2

2 S u21
m2

u2 D , H int5
s

c
ln

2A2c

u
.

The ratio H int /H0 is of order vp
2/ṽ0

2 . For the Penning
trap, the ratio is small in the guiding center limit. For th
Paul trap, it is small for the fast rotating spheroid. If this
the case, the right-hand side of Eq.~26! is a small perturba-
tion. By dropping it, one can write the expression foru(t)
much as forv(t). The only difference is that negative solu
tions are not allowed. For example, for smallm the solution
takes the formu5umaxucosṽ0tu.

Now our goal is to take into account the corrections co
cerned with the right-hand side of Eq.~26!. We will see that
a nonlinear coupling of radial and axial oscillations results
some frequency shift.

Let us introduce new canonical variables (J,c) instead of
(u̇,u). The transformation is described by the following ge
erating function:

S~J,u!5ṽ0EA4J

ṽ0

2u22
m2

u2
du.

The equationsc5]S/]J and u̇5]S/]u yield

u25
2J

ṽ0

1coscAS 2J

ṽ0
D 2

2m2, ~32!

2ṽ0J5
u̇2

2
1

ṽ0
2

2 S u21
m2

u2 D . ~33!

This puts the Hamiltonian into the form

H52ṽ0J1
s

c
ln

2A2c

u~J,c!
,
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1220 PRE 62SH. G. AMIRANASHVILI
where u(J,c) should be taken from Eq.~32!. Since H int
describes a small perturbation of the periodic motion, o
can averageH int over c:

H int°^H int&5
s

c
ln

2A2c

A~1/ṽ0!J1~1/2!umu
. ~34!

The procedure is the canonical version of the method of
eraging@29#. It puts the radial oscillations into an integrab
form

dJ

dt
50,

dc

dt
52ṽ02

s

c~2J1umuṽ0!
.

The quantity J is an adiabatic invariant. By takingumin

<u(t)<umax in line with expression~33! for J(u̇,u), the fol-
lowing equations are found:

umax
2 umin

2 5m2, J5
ṽ0

4
~umax

2 1umin
2 !.

Employing Eq. ~32! for u(J,c) and assumingdu/dt(0)
50, u(0)5umax, we derive the final expression foru(t),

u2~ t !5
umax

2 1umin
2

2
1

umax
2 2umin

2

2
cosvt, ~35!

where

v52ṽ02
2s

c~umax1umin!
2ṽ0

. ~36!

The method of averaging is valid as far as the frequency s
is small compared with 2ṽ0. Then Eq.~36! can be put into
the equivalent form

v254ṽ0
22

8s

c~umax1umin!
2

. ~37!

Equation~37! is the best choice. Note, that for the sm
oscillationsumax1umin can be replaced by twice the equilib
rium value of u. Then Eq.~37! takes the formv254ṽ0

2

2vp
2 , which is valid even in the case of comparably valu

vp and ṽ0. It follows that Eq.~37! is a reasonable approx
mation near the Brillouin limit. Moreover, it is valid for a
strongly nonlinear regime withumax@umin .

In reality, one may prefer to average the radial frequen
over the oscillations in length of the spheroid. Then Eq.~37!
should be averaged as well. The simplest approximatio
thatc(t) varies harmoniously from minimal to maximal va
ues. Then one can see that^1/c& should be replaced by
(cmaxcmin)

21/2. Therefore, Eq.~37! takes the form

v254ṽ0
22

8s

~cmaxcmin!
1/2~umax1umin!

2
. ~38!

This simple relation is of special interest, because it direc
links the radial frequency with the ellipsoid shape and p
ticle number.
e

v-

ift

y

is

y
-

Now let us turn to more detailed investigation of Eq.~29!
for the length of the spheroid. The related Hamiltonian is

H5Hc1H int5S ċ2

2
1

v0
2c2

2
D 1

s

c
ln

2A2c

u
.

The quantitiesHc andH int are of the same order. Neverthe
less, the latter term oscillates rapidly and should be avera
Note that Eq.~29! containsu(t) under a logarithmic sign.
Therefore, it is not necessary to apply sophisticated equa
~31! in order to averageH int over the radial oscillations. One
can use the guiding center expression~34! instead. The result
can be put into the form

^H int&5
s

c
ln

4A2c

umax1umin
.

Therefore, we are given the following equation:

d2c

dt2
1v0

2c5
s

c2 S ln
4A2c

umax1umin
21D . ~39!

The dynamics ofc(t) is integrable, given by the integral

v0t5E
cmax

c dc

A2@Ueff~cmax!2Ueff~cmax!#
,

with

Ueff~c!5
c2

2
1

s

v0
2c

ln
4A2c

umin1umax
.

The equilibrium valuec5c0 is obtained from Eq.~39! by
dropping the time derivatives. This leads to a simple gen
alization of Eq.~3!. The frequency of small oscillations i
v253v0

22(1/c0
3)s. The latter term is less then the forme

by a factor of lnb.
To supplement the theory, we obtained several numer

solutions of the exact Eqs.~21!, ~23!, and ~24!. In the re-
maining part of this section the expressions are written
terms of the dimensionless variables. Times are normali
by 1/ṽ0, and distances by (s/ṽ0

2)1/3. The normalized vari-
ables are denoted by an overbar.

We start with the spheroidal plasma. In the case or ra
oscillations, Eq.~24! is satisfied identically. In addition, the
quantitiesAi can be expressed in terms of elementary fu
tions. By doing this one can put Eqs.~21! and ~23! into the
forms

dū2

d t̄2
1ū2

m̄2

ū3
5

1

c̄ū
S 1

e2
1

12e2

2e3
ln

11e

12eD , ~40!

dc̄2

d t̄2
1e c̄5

1

c̄2 S 1

2e3
ln

11e

12e
2

1

e2D , ~41!

wheree5v0
2/ṽ0

2, and the eccentricitye5A12ū2/(2c̄2).
Equations~40! and~41! have been integrated numerical

for several cases. Once the equilibrium values ofū( t̄ ) and
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c̄( t̄ ) were specified, we calculated correspondingm̄ and e.
Then the radial oscillations of the spheroid were excited
settingdū/d t̄(0) nonzero.

A typical example of a numerical solution is shown
Fig. 1. In this case the values of the semiaxes were chose
such a way thatvp andṽ0 are of the same order. Therefor
the equilibrium spheroid is close to the Brillouin limit. Nev
ertheless the large difference in the frequencies of the ra
and axial oscillations is clearly observable. A major init
value of dū/d t̄(0) leads to a highly nonlinear motion wit
umax/umin'102. Nevertheless, the nonlinear coupling
small. This suggests that the system is nearly integrable

For each numerical solution we determined the maxim
and minimal values ofū( t̄ ) and c̄( t̄ ). Then the averaged
frequency of the radial oscillations was compared with t
predicted by a dimensionless version of Eq.~38!. Some re-
sults are shown in Fig. 2. For clarity we present the predic
values of the frequency as smooth curves. The reader sh
keep in mind that in reality all data were discrete sets
points.

FIG. 1. A numerical solution of Eqs.~40! and ~41! for oscilla-
tions in radius and length of a prolate plasma spheroid. The up

curve is one-half the normalized plasma lengthc̄( t̄ ), and the lower

curve is the radiusā( t̄ )5b̄( t̄ ). An equilibrium spheroid withū0

50.5 and c̄054 was perturbed by imposingdū/d t̄(0)52. The
possibility of a two-time-scale approach is clearly observable. T
oscillations are highly nonlinear, but the system shows a cohe
~integrable! behavior.

FIG. 2. A normalized frequency of the radial oscillations of
prolate plasma spheroid~dots! is compared with that~solid lines!

predicted by Eq.~38!. The relative amplitude isūmax/ū0. Equilib-

rium spheroids with~A! ū051 andc̄056, ~B! ū050.4 andc̄058,

~C! ū050.5 andc̄058, and~D! ū050.5 andc̄054 were perturbed

by settingdū/d t̄(0)Þ0. Case~D! is close to the Brillouin limit.
Nevertheless, a simple guiding center formula provides a rea
able agreement with the computing.
y

in

ial
l

l

t

d
uld
f

The asymmetric mode of the spheroid was exited by s
ting nonzerodv̄/d t̄(0). Now thequantitiesAi are calculated
in a more cumbersome way, and the computing involves
~24! in line with Eqs.~21! and~23!. The theoretical value of
the frequencyv̄51 was found to be in a good agreeme
with that obtained from the computing.

Several examples of triaxial equilibrium ellipsoids we
considered in addition to the spheroidal plasma. In summ
Eq. ~38! was found to be a good approximation for the rad
oscillations, either in the guiding center regime or in a
gime which is close to the Brillouin limit.

IV. CONCLUSION

We have studied oscillations of the one component lo
energy plasma confined in a harmonic Penning trap or i
radio-frequency Paul trap. The plasma equilibrium state
uniform density ellipsoid of revolution. Normal modes co
responding to quadrupole perturbations of this plasma ar
particular interest, because they provide a nondestructive
agnostic tool.

The quadrupole oscillations of a trapped plasma can
calculated analytically even in the nonlinear regime. T
theory is based on the analogy between the one-compo
plasma and the massive fluid. The oscillations are descr
by a relatively simple Hamiltonian system, originally derive
by Dubin @24#. In general the dynamics is stochastic. Nev
theless, in some particular cases the system can be n
integrable. We have found and studied in detail a case
regular behavior.

It is of interest that a reduced version of the Hamiltoni
corresponding to an infinite elliptical column turns out to
integrable in quadratures@30#. This suggests considering th
dynamics of the elongated ellipsoid.

We investigated the possibility for a semiaxis to be lar
as compared to the others axes. It appears that prolate e
librium can be observed in the Penning trap both in the B
louin zone and in the guiding-center limit. For the Paul tra
the elongated spheroid exists only if the radio-frequen
trapping force is supplemented by the electrostatic one, s
to provide strong anisotropy.

Then we have considered the dynamics of an ellips
with a principal axis oriented along the magnetic field. T
system is equivalent to the three coupled nonlinear osc
tors. One oscillator corresponds to the asymmetric radial p
turbation of the spheroid. The others describe symmetric
dial and axial oscillations.

In the limit of an elongated ellipsoid, the matter is co
siderably simplified. The asymmetric mode becomes se
rated from the others, and is reduced to quadratures.
other two oscillators are still coupled, but the radial oscil
tions have much higher frequencies than the axial ones.
solved this problem by means of the method of averagi
The study results in simple analytical expressions for
frequencies and the ellipsoid semiaxes.
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APPENDIX

In this section we calculateAi in the limit that one prin-
cipal axis becomes very long. A first approximation is giv
by Eq. ~25!. It corresponds to an infinite column with a
elliptical cross section. This approximation is sufficient f
radial oscillations, but is inadequate to give a description
axial oscillations. Here the calculation is carried out to
higher accuracy.

Recall that in terms ofAi , Eq. ~12! for the space-charge
potential within a uniformly charged ellipsoid takes the for
of Eq. ~13!, where

I 5abcE
0

` dj

A~a21j!~b21j!~c21j!
.

Only I (a,b,c) needs further consideration, because of
relations@20#

A15
I

a2
2

1

a

]I

]a
, A25

I

b2
2

1

b

]I

]b
, A35

I

c2
2

1

c

]I

]c
.

One can assume thata,b,c and definedP@0,p/2# andk
P@0,1#, so that

a

c
5sind,

c22b2

c22a2
5k2.

By replacing the variables

j°u, 11
j

c2
5

cos2d

sin2u
,

we put the expression forI into the form

I 5
2ab

cosd
F~p/22d,k!,

where

F~u,k!5E
0

u du

A12k2sin2u
as

s

H

v

f

e

is an elliptic integral. By puttingc→`, we see that both

quantitiesd andk85A12k2 are small. The further calcula
tion is not immediate. The point is that the regular expans
for F(u,k) near the point (p/2,1) can be obtained only i
one of the two arguments is fixed.

To proceed, we employ a relation@31#

F~u,k!1F~u* ,k!5F~p/2,k!,

which is valid if

k8tanu tanu* 51.

Fortunately, in our case tanu* 5a/Ab22a2 is independent
of c. Then,

I 5
2ab

cosd FF~p/2,k!2FS arcsin
a

b
,kD G .

Now both integrals can be expanded in a standard man
The calculation results in

I

2ab
5 ln

4c

a1b
1

a21b2

4c2 S ln
4c

a1b
21D1

ab

4c2
1•••.

Then

A15
2b

a1b S 11
a21b2

4c2 D 2
b2

2c2
2

ab

c2 S ln
4c

a1b
21D ,

A25
2a

a1b S 11
a21b2

4c2 D 2
a2

2c2
2

ab

c2 S ln
4c

a1b
21D ,

A35
2ab

c2 S ln
4c

a1b
21D .

These are the desired generalizations of Eqs.~25!. The ex-
pression forA3 is essential to the calculation of axial osc
lations.
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